Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral.
نویسندگان
چکیده
We demonstrate selective trapping or rotation of optically isotropic dielectric microparticles by plasmonic near field in a single gold plasmonic Archimedes spiral. Depending on the handedness of circularly polarized excitation, plasmonic near fields can be selectively engineered into either a focusing spot for particle trapping or a plasmonic vortex for particle rotation. Our design provides a simple solution for subwavelength optical manipulation and may find applications in micromechanical and microfluidic systems.
منابع مشابه
Impacts of Nanoparticles and Nano Rod Arrays on Optical Generation Rate in Plasmonic-Based Solar Cells
In this article, the effect of plasmonics properties of metal nanorods and nanoparticles on solar cell performance were investigated and simulated. Due to the classic solar cell disadvantages, it seems that a plasmonic solar cell is one of these methods. In plasmonic solar cells, because of plasmonic effect, a high electric field builds around metal nanoparticles so that high conversion efficie...
متن کاملTowards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light
Graphene plasmons are rapidly emerging as a versatile platform for manipulating light at the deep subwavelength scale. Here we show numerically that strong optical near-field forces can be generated under the illumination of mid-IR light when dielectric nanoparticles are located in the vicinity of a nanostructured graphene film. These near-field forces are attributed to the excitation of the gr...
متن کاملReview of the Functions of Archimedes’ Spiral Metallic Nanostructures
Here, we have reviewed some typical plasmonic structures based on Archimedes' spiral (AS) architectures, which can produce polarization-sensitive focusing phenomenon and generate plasmonic vortices (PVs) carrying controllable orbital angular momentum (OAM) because of the relation between the incident polarized states and the chiralities of the spiral structures. These features can be used to an...
متن کاملCoupled electrorotation: two proximate microspheres spin in registry with an AC electric field.
We report a novel approach to micro- and nanoparticle rotation, uniting the fine translational control afforded by optical trapping with the flexibility and simplicity of dipole-field-induced coupled electrorotation (CER). Fluorescence imaging using a microparticle photopatterning technique was combined with optical trapping to quantify both the senses and speeds of rotation for individual pair...
متن کاملGiant local circular dichroism within an asymmetric plasmonic nanoparticle trimer
We investigated the near-field response in silver nanoparticle aggregates to the excitation of circular polarized light. In a right-angle trimer system, the local field intensity excited by right-hand circularly polarized light is almost one thousand times larger than the left-hand case. By analyzing the polarization and phase of the local field in plasmonic hotspots, we found this local circul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2014